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SUMMARY

Inviscid two-dimensional free surface wave motions are simulated using a �-transformed �nite-element
model based on potential theory for irrotational, incompressible �uid �ow over a �at �xed bed. The
free surface boundary condition is fully non-linear, and so non-linear e�ects up to very high order can
be modelled. The �-transformation involves linear stretching of the mesh between the bed and free
surface. This has two major advantages. First, remeshing due to the moving free surface is avoided.
Second, the mesh nodes are aligned vertically, allowing a high order calculation of the free surface
vertical velocity component to be implemented without smoothing, except for very steep waves. The
model however is further restricted to non-overturning, non-breaking waves because of the uniqueness
of the �-transformation. Excellent agreement is obtained with analytical and alternative numerical data
for small amplitude free sloshing in a rectangular tank and forced sloshing in a horizontally base-
excited rectangular tank. At higher amplitudes, non-linear e�ects are evident in the simulations by
the present numerical model. The model is also able to reproduce steep progressive waves due to a
wave-maker in agreement with Stokes 5th theory, second-order shallow water waves in agreement with
cnoidal theory, and focused wave groups that match the experimental measurements acquired by Baldock
et al. [A laboratory study of non-linear surface waves on water. Phil. Trans. R. Soc. Lond. A 1996;
354:649–676]. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An understanding of non-linear free surface motions is important in many engineering liquid–
structure interaction problems. The ringing of o�shore structures interacting with steep waves
is believed to be a phenomenon driven by high-order non-linear behaviour of the free surface
(see e.g. Grue et al. [1], Faltinsen et al. [2], Stansberg et al. [3], Chaplin et al. [4]). Ringing
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exhibits itself as a transient high frequency oscillatory structural response and is particularly
relevant to �oating structures containing large diameter vertical columns, such as tension
leg and gravity platforms. Inundation and non-linear sloshing of greenwater on the decks of
vessels is also due to interactions with steep waves. Furthermore, large amplitude sloshing
e�ects within containers (e.g. oil storage cylinders) can seriously impair structural integrity
after an earthquake has occurred.
Steep gravity waves are, by de�nition, non-linear due to the non-linear dynamic and kine-

matic free surface boundary conditions, themselves speci�ed on the unknown position of the
free surface. The governing equations are usually posed with the assumptions of an inviscid
and incompressible liquid. Low order perturbation techniques can be used to obtain analytical
solutions for mildly non-linear problems, but outside their range of validity it is necessary
to resort to numerical methods. Such methods for simulating waves may then be readily ex-
tended to model the interaction of waves and �xed or moving bodies on or beneath the free
surface. To date the most common numerical approach has been the boundary element method.
Longuet-Higgins and Cokelet [5] were the �rst to use this approach to model fully non-linear
wave problems in the time domain. The early work was directed at an understanding of steep
waves in the absence of bodies, and assumed periodicity of the propagating waves. More
recently, the full non-linear di�raction-radiation problem in steep transient waves has been
investigated using the boundary element method. A comprehensive survey of the application
of boundary element techniques to numerical wave tanks has been provided in the review by
Kim et al. [6]. In subsequent work, Ferrant [7] has shown how both waves and currents may
be included in the model, and Boo [8] has illustrated the advantages of using higher order
boundary elements.
The review by Kim et al. [6] did not attempt to cover the progress being made in using the

�nite element method as the basis for a numerical wave tank. Wu and Eatock Taylor [9] used
this approach for fully non-linear problems in two dimensions. A comparison of the boundary
element and �nite element methods for the non-linear wave–body interaction problem was
made by Wu and Eatock Taylor [10]. This suggested that the �nite element method could be
more e�cient than the boundary element method if one could exploit the banded structure of
the resulting �nite element equations. The approach was subsequently developed for a three-
dimensional tank by Wu et al. [11] and Ma et al. [12, 13]. The latter work led to some good
comparisons with physical model tests in steep waves conducted by Nestegard [14].
Other research is being conducted on alternative modelling strategies for a numerical wave

tank, and on improvements to the �nite element approach which would increase its e�ciency
and robustness. Robertson and Sherwin [15] have adopted an hp=spectral element model.
Chern et al. [16, 17] used a pseudo-spectral collocation method for both two-dimensional and
three-dimensional problems and this approach has been developed further by Le Touz�e et al.
[18]. A hybrid method, which aims to capture the advantages of both boundary element and
�nite element equation structure, has recently been developed by Wu and Eatock Taylor [19].
Boundary elements are used in a regime close to the body, and a structural �nite element
mesh away from it. This is related to the idea explored here of coupling an unstructured �nite
element mesh around the body with a simple structured mesh in the outer domain. Because a
large spatial domain may need to be included in the modelling of a numerical wave tank, to
avoid problems arising from re�ections o� the body, it is advantageous to employ a simple
structured mesh in regions distant from the body. Signi�cant additional savings could be
achieved if it were possible to avoid remeshing in the outer domain as the �ow evolves.
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Figure 1. (a) Physical domain, (b) Computational domain.

The present paper aims to demonstrate the feasibility of solving the fully non-linear problem
using the �nite-element method, but without remeshing. It is based on an extended version of
the two-dimensional �nite element model developed by Wu and Eatock Taylor [9, 10] who
used a structured mesh that was regenerated each time step to �t the moving free surface. In
the present model, a sigma-transform is used to map the physical mesh linearly between the
bed and free surface onto a �xed computational mesh. Similar mappings have previously been
used by Stelling and Van Kester [20], Huang and Spaulding [21], and Ko�cyigit et al. [22] for
shallow �ows, and in a pseudo-spectral element approach for inviscid wave motions described
by Chern et al. [16]. The present model is used to predict non-linear wave sloshing in a tank,
steep regular wave pro�les and focused wave groups in a �ume. Free surface smoothing was
only required for steep progressive waves. The following sections �rst introduce the governing
equations, the sigma-transformed �nite element formulation, and then give results from a series
of validation tests.

2. GOVERNING EQUATIONS

Figure 1(a) depicts a Cartesian co-ordinate system O-xz such that the origin is on the mean free
surface and z is vertically upwards. The �uid is assumed to be inviscid and incompressible,
and the �ow irrotational. Hence a velocity potential � exists which satis�es Laplace’s equation,

∇2�=0 (1)

The velocity is speci�ed at tank walls, and at the wave-maker, where required. The boundary
condition on the velocity boundary (e.g. the wave-maker) is,

@�
@n
=f2 (2)

where f2 is the normal velocity at the boundary and n is normal to the boundary and is
directed out of the �uid domain.
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On the free surface, the two-dimensional non-linear dynamic and kinematic free surface
boundary conditions are to be satis�ed. These are:

g�+
@�
@t
+
1
2
∇� · ∇�=0 (3)

and

@�
@z
=
@�
@t
+
@�
@x
@�
@x

(4)

where � is the free surface elevation vertically above the still water level, g is the acceleration
due to gravity and t is time. The dynamic free surface boundary condition comes from
Bernoulli’s equation with relative pressure equal to zero. The kinematic condition is e�ectively
a statement that particles on the free surface remain on the free surface.
In the case of a long �ume, a condition is imposed in the vicinity of the downstream end,

to absorb the incoming waves without causing re�ections. This is discussed further below.

3. �-TRANSFORMED FINITE ELEMENT FORMULATION

3.1. Computational domain

A triangular �nite element mesh is used to discretize the �ow domain. Assuming that the
liquid is uniquely connected in the vertical direction, a linear stretching can be applied to
map the mesh from the physical (wavy) domain to a �-transformed computational domain on
which the �nite element computations are performed. This eliminates the need for remeshing
according to the position of the free surface as would be undertaken in arbitrary Lagrange–
Eulerian �nite element schemes for example. Moreover, the resulting mesh is structured, with
triangular element nodes lying along vertical lines, thus enabling the higher-order velocity
calculation described in Section 3.4.2 to be used to update the vertical component of the
surface velocity.

3.2. �-transformation

The transformation from the physical (x, z, t) to the �-transformed (X , �, T ) system is based
on the following mappings:

X =
x
l
; �=

z + d
h

and T = t (5)

where l is the length of the domain, d is the depth of the domain (the distance from the sea
bed to the mean free surface) and h is the distance of the sea bed to the actual free surface
(see Figure 1(a)). Using the chain rule, the derivative operators are:

@
@x
=
1
l
@
@X

+
(
@�
@x

)
@
@�
;

@
@z
=
1
h
@
@�

and
@
@t
=
@
@T

+
(
@�
@t

)
@
@�

(6)

The derivatives of � with respect to x and t are found from

@�
@x
=
1
lh

(
−� @�

@X
+ (1− �) @d

@X

)
and

@�
@t
=
1
h

(
−� @�

@T

)
(7)
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where � is the free surface elevation measured from the mean free surface (h= �+ d), and
it is assumed that the mean depth is constant.

3.3. Finite element formulation

Using the Galerkin technique, Laplace’s equation is multiplied by each shape function in turn
and integrated over the entire domain (see Wu and Eatock Taylor [10]) to give:

∫
R
∇Ni ·

n∑
j=1
�j∇Nj dR|j =∈S1 =−

∫
R
∇Ni ·

n∑
j=1
�j∇Nj dR|j∈S1 +

∫
S2
Nif2 dS (8)

where n is the number of nodes, �j is the nodal velocity potential and Nj(X; �) are the linear
shape functions, S1 and S2 are the surfaces on which the potential and its normal derivative
are speci�ed, respectively, and R is the �ow domain. The equation is written in matrix form,
[A]{�}= {B} where {�} is the vector of the nodal velocity potentials and the coe�cients of
[A] and {B} are given by

Aij=
∫
R
∇Ni · ∇Nj dR or

Aij=1 if i= j and i∈S1
Aij=0 if (i∈S1 or j∈S1) and i �= j

(9)

and

Bi=−
n∑
j=1
�j

(∫
R
∇Ni · ∇Nj dR

)∣∣∣∣
j∈s1

+
∫
S2
Nif2 dS or Bi=�i if i∈S1 (10)

The Jacobian of the transformation is

@(X; �)
@(x; z)

=

∣∣∣∣∣∣∣∣

@X
@x

@X
@z

@�
@x

@�
@z

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1
l

0

@�
@x

1
h

∣∣∣∣∣∣∣∣
=
1
lh

(11)

and so

dR=dx dz= lh dX d� (12)

The gradient operator can be expressed in terms of the transformed co-ordinates:

∇=



@
@x

@
@z


=



1
l
@
@X

+
(
@�
@x

)
@
@�

1
h
@
@�


 (13)

The spatial derivatives of the shape functions become:

@Ni
@X

=
�i
2�

and
@Ni
@�

=
�i
2�

(14)
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Therefore, integrating ∇Ni · ∇Nj over one element (e) gives

1
l
�i�j
4�2

∫
e
h dX d�+

�i�j + �j�i
4�2

∫
e

(
@�
@x

)
h dX d�

+
l�i�j
4�2

∫
e

(
@�
@x

)2
h dX d�+

l�i�j
4�2

∫
e

1
h
dX d� (15)

The coe�cient Aij is obtained by summing (15) over all elements. Provided the surface S2
on which @�=@n is speci�ed is vertical, the second term in (10) can be expressed as

∫
S2
Nif2 dS=

∫ 1

0
Nif2h d� (16)

The matrix equation is solved using Gaussian elimination.

3.4. Velocity calculation

Once the potential at all the nodes has been evaluated, the gradients of the potential in the
X and � directions are calculated. Two alternative methods of obtaining these gradients are
described here.

3.4.1. The least squares method. Each node, Pj is connected to p other nodes by the �nite
element mesh. Let the position vector of the kth node relative to Pj be denoted by lk . The
X and � components of lk divided by the magnitude of lk are written lkx and l

k
z . The least

squares method involves solving the following matrix equation at each node Pj:




P∑
k=1
lkX l

k
X

P∑
k=1
lkX l

k
�

P∑
k=1
lkX l

k
�

P∑
k=1
lk�l

k
�







@�
@X

@�
@�



=




P∑
k=1
lkX
@�
@lk

P∑
k=1
lk�
@�
@lk




(17)

which yields the required gradient vector. This method is described by Eatock Taylor et al.
[23] and is suitable for any kind of unstructured mesh.

3.4.2. Higher order calculation. For the structured meshes used in this paper, each node on
the free surface will have a number of nodes vertically beneath it with the same X co-ordinate.
This allows a better estimate of @�=@� to be made using the nodal values of the potential at
a series of nodes below the free surface.
In the following analysis, subscript 1 refers to the free surface node, and subscripts 2 and

higher refer to subsequent nodes beneath the free surface node. Each value of � is expressed
as a multiple of the spacing �� between the top two nodes.

�1 = 1 �2 = 1−�� �3 = 1− ��� �4 = 1− ��� (18)
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If the vertical variation of the potential is assumed to be quadratic, then it can be written as

� = A
(
� − 1
��

)2
+ B

(
� − 1
��

)
+ C (19)

Putting in values for � and � at three nodes (one on the free surface and two nodes vertically
beneath) gives three simultaneous equations which can be solved for the unknown coe�cients.
Di�erentiating Equation (19) and using �1 = 1, gives the vertical gradient at the free surface as

@�
@�
=
2A(�1 − 1)
��2

+
B
��

=
B
��

=
(�2 − 1)�1 − �2�2 + �3

�(�− 1)�� (20)

If the nodes are evenly spaced then �=2, leading to

@�
@�
=
3�1 − 4�2 + �3

2��
(21)

A higher-order formula, assuming a quartic variation of �, and using �ve nodes, can be
obtained by a similar procedure. For the case of evenly spaced nodes:

@�
@�
=
25�1 − 48�2 + 36�3 − 16�4 + 3�5

12��
(22)

The horizontal and vertical velocities, u and w, can be found from these gradients using the
following:

u=
@�
@x
=
1
l
@�
@X

+
1
lh

(
−� @�

@X
+ (1− �) @d

@X

)
@�
@�

(23)

w=
@�
@z
=
1
h
@�
@�

(24)

3.5. Updating the free surface

The velocity components are used to �nd the rates of change of the free surface elevation and
free surface potential with time. The free surface kinematic boundary condition, Equation (4),
yields:

@�
@T
=w − u @�

@x
=w − u

l
@�
@X

(25)

The dynamic free surface boundary condition, Equation (3), becomes:

@�
@T
=−g�− 1

2
(u2 + v2) +

@�
@T
w (26)

where use has been made of Equations (6) and (7). The term involving the rate of change
of � is obtained from Equation (25).
The rates of change of free surface elevation and free surface potential are used to step

these values forward in time, using a fourth-order Runge–Kutta scheme to obtain the non-linear
motions of the free surface to a reasonable level of accuracy while retaining computational
stability [9]. This is particularly important when modelling steep waves.
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Figure 2. Initial free surface pro�le in a rectangular tank.

3.6. Smoothing for steep wave cases

When steep waves are simulated it is necessary to perform smoothing on the free surface in
order to prevent the development of instabilities. This involves assigning new values to the
nodal values of � and � based on a weighted average of the initially calculated nodal values.
Two smoothing functions have been used, one based on �ve nodes (see Reference [5]):

�∗i =
1
16
(−�i−2 + 4�i−1 + 10�i + 4�i+1 − �i+2) (27)

and the other based on a template of seven nodes:

�∗i =
1
32
(−�i−3 + 9�i−1 + 16�i + 9�i+1 − �i+3) (28)

Similar formulas apply for �. For the test cases considered in this paper, smoothing was not
required except for Stokes’ progressive waves of steepness ¿0:3.

4. RESULTS

4.1. Free sloshing in a �xed rectangular tank

Figure 2 shows a �xed rectangular tank of length, l, and still water depth, d. The free surface
is released from rest, with initial pro�le corresponding to a sinusoid given by

�= a cos
(
2�x
l

)
(29)

where a is the amplitude of the sinusoidal free surface pro�le, l is the wavelength, and x is
the horizontal distance from the origin, which is located at the mean free surface position at
the far left of the tank. The length to still water depth ratio, l=d=2.
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Figure 3. Initial 64× 32 element mesh in physical domain; a=d=0:1.

Figure 4. Mesh convergence tests for a=d=0:01. Solid line: �ne mesh (128× 64); Long dashed line:
intermediate mesh (64× 32); Short dashed line: coarse mesh (32× 16).

The mesh was chosen to be non-uniform in the transformed domain; in fact, the node
spacing at the free surface was four times �ner than at the base of the tank. The horizontal
node spacing was uniform. Figure 3 illustrates an initial mesh in the physical domain consisting
of 64 horizontal by 32 vertical elements. Here, the vertical and horizontal velocity components
at the free surface were calculated using the higher-order calculation and least-squares method,
respectively. Smoothing was not applied. Figure 4 depicts the free surface time history at the
centre of the tank obtained using a �ne mesh (128× 64), intermediate mesh (64× 32) and
coarse mesh (32× 16). The results obtained using the �ne and intermediate meshes are almost
identical, indicating that mesh convergence was achieved using a mesh of 64× 32 elements.
Similar stability tests for di�erent time steps using the 64× 32 element mesh indicated that
�t=0:05

√
d=g was su�cient; the CPU time per time step was 2:5 s on a 200 MHz Sun

Workstation.
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Figure 5. (a) Time history of the free surface elevation at the centre of the tank. Free sloshing with
a=d=0:001; Solid line: �-transform solution; dashed line: linear solution. (b) Spatial pro�les at di�erent

times during the oscillation. Free sloshing with a=d=0:001. �-transform solution.

Figure 6. (a) Time history of the free surface elevation at the centre of the tank. Free sloshing
with a=d=0:1. Solid line: �-transform solution; dashed line: second-order solution; thin line:
solution of Chern et al. [16]. (b) Space pro�les at di�erent times during the oscillation. Free

sloshing with a=d=0:1. �-transform solution.

For a=d=0:001, the small amplitude oscillations were almost perfectly sinusoidal, in ac-
cordance with linear potential theory. Figure 5(a) presents the time-dependent behaviour of
the free surface at the centre of the tank, along with the analytical solution from �rst-order
potential theory, which is

�1 =−a cos(!2t) (30)

where !2 =
√
gk2 tanh(k2d) and k2 = 2�=l. The numerical and analytical results are virtually

identical, and there is no discernible phase di�erence. Spatial pro�les of the free surface along
the tank at intervals during a typical sloshing wave period are shown in Figure 5(b), where a
pair of nodes occur exactly at x=l=0:25 and 0.75. The pro�les are sinusoidal and repeatable,
con�rming that the small amplitude sloshing is linear.
For a=d=0:1, the sloshing amplitude is large, and the waves are steep and non-linear. The

same mesh and time step were used as before. Figure 6(a) depicts the free surface motions
at the centre of the tank. Superimposed on Figure 6(a) are the numerical results from Chern
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et al. [16] who used a pseudospectral approach and the analytical solution from second-order
potential theory [9]. The latter can be expressed as

�2 =−acos(!2t) + 1
8g

(
2(!2a)2 cos(2!2t) +

a2

!22
(g2k 22 +!

4
2)

− a
2

!22
(g2k 22 + 3!

4
2) cos(!4t)

)
(31)

where !4 =
√
gk4 tanh(k4d) and k4 = 4�=l. The �-transformed �nite element and pseudospec-

tral models give results that almost overlay each other, and are very similar to those obtained
by Greaves et al. [24] who used a �nite element potential �ow model based on triangularised
quadtree meshes. The numerical results are in close agreement with the second-order analyti-
cal solution except for a phase di�erence. This di�erence is due to high-order non-linearities
(third and above) that alter the fundamental oscillation frequency: in this case one can
estimate from Figure 6(a) that !=!0 = 0:990 where !0 is the sloshing frequency predicted
by linear wave theory. When the amplitude ratio, a=d, is increased to 0.13, the estimated ratio
!=!0 is 0.982. This is similar to the value !=!0 = 0:978 found by Greaves et al. [24] for
a=d=0:13. Moreover, Tsai and Jeng [25] obtained !=!0 = 0:979 for a=d=0:13 by replacing
the velocity potential by a truncated Fourier series and solving Laplace’s equation by Newton
iteration.
Examination of the free surface time histories leads to the conclusion that in all cases

the �rst and second peaks coincide with the second-order solution, but the third peak is
appreciably larger and the fourth smaller. The �rst trough is deeper, the second shallower, the
third similar and the fourth deeper. Figure 6(b) illustrates the spatial behaviour of the free
surface along the tank at intervals over a sloshing period, for the case a=d=0:1. At the centre
of the tank, the wave peak is higher and narrower and the trough shallower and wider than
for the small amplitude case. As also observed by Chern et al. [16], the well de�ned nodes
one-quarter and three-quarters along the tank obtained for linear sloshing have disappeared;
instead the surface pro�les are much more complicated due to non-linearity.
Figure 7 compares the free surface elevation time histories at the centre of the tank obtained

using higher order velocity and least squares velocity calculations described previously. The
higher order velocity calculations are without smoothing, unlike the least squares calculations,
which broke down if smoothing was not implemented.

4.2. Forced sloshing in a base-excited rectangular tank

Sloshing wave motion can be generated in a rectangular tank by oscillating the entire tank
horizontally. For small amplitudes this is equivalent to imposing the same horizontal velocity
on both the side walls. If the frequency of this imposed motion is similar to the natural
sloshing frequency then resonance will occur.
For all simulations in this section, a structured mesh is used of 64× 32 elements (l=d=2)

and the time step is 0:1
√
d=g; the CPU time per time step on the Sun Workstation is 2:5 s.

The initial free surface elevation is everywhere zero. The velocity of the side walls is given
by u= a! sin(!t) where ! is the frequency of oscillation and a is the e�ective amplitude of
oscillation of the side walls.
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Figure 7. Comparison between velocity calculation methods, a=d=0:1. Solid line: higher order velocity
calculation without smoothing; Dashed line: least squares velocity calculation with smoothing.

The linear solution for the free surface elevation [11] is

�= �1 + �2 (32)

where

�1 =
a
g

(
x!2 +

∞∑
n=0
Cn! sin(knx)

)
sin(!t) (33)

�2 =−a
g

∞∑
n=0
!n

(
Cn +

Hn
!2

)
sin(knx) sin(!nt) (34)

and

kn=
(2n+ 1)�

l
; !n=(gkn tanh(knd))1=2; Hn=

(−1)n4!3
bk 2n

; Cn=
Hn

!2n −!2
(35)

Using the above equations, the natural sloshing frequency is !0 = 1:2
√
g=d.

Figure 8 displays the time history of the free surface elevation at the left-hand wall of
the tank, for an excitation frequency !=0:999!0. In this case, the oscillation amplitude
monotonically increases with time. When the excitation frequency is increased to 1:1!0, the
free surface elevation given in Figure 9 is quite di�erent in that it is modulated and repeatable.
Predictions by the present model are in close agreement with the corresponding linear analy-
tical solutions given by Equation (32) and the predictions by Chern et al.’s [16] pseudospectral
model, also shown in Figures 8 and 9.

4.3. Regular progressive waves due to a wave-maker

Progressive free surface waves were generated in the numerical �ume illustrated in Figure 10,
by imposing the horizontal water particle velocity component, u, (as predicted by linear theory)
as a boundary condition on the lateral wall at the left-hand end of the �ume. Thus

u=
H!
2
cosh(k(d+ z))
sinh(kd)

cos(!t) (36)
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Figure 8. Time history of free surface elevation at left wall of a base-excited tank. Excita-
tion frequency, !=0:999!0. Solid line: �-transform solution; dashed line: linear analytical

solution; thin line: solution of Chern et al. [16].

Figure 9. Time history of free surface elevation at left wall of base-excited tank. Excita-
tion frequency, !=1:1!0. Solid line: �-transform solution; dashed line: linear analytical

solution; thin line: solution of Chern et al. [16].

Figure 10. Wave tank for progressive wave case.
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Figure 11. Spatial pro�les for t=0 to 60 T at intervals of 2T . H =0:01 m, !=6:264 rad=s.

where H is the wave height, ! the angular wave frequency, k the wave number magnitude,
d the still water depth, z the vertical distance above still water level, and t the time. At
the right-hand end of the tank, wave absorption was achieved using the Sommerfeld radi-
ation criterion in conjunction with a damping layer. The Sommerfeld radiation condition is
@�=@t=−c@�=@x where c is the wave celerity determined from linear theory. The damping
layer is implemented by modifying the time derivatives of the free surface elevation and
surface velocity potential, such that in the transformed domain

@�
@T
=
@�p
@T

− S!
(
X − Xs
Xe − Xs

)3
�p and

@�
@T
=
@�p
@T

− S!
(
X − Xs
Xe − Xs

)3
�p (37)

where Xs and Xe are the X -co-ordinates of the beginning and end of the damping layer,
the subscript p denotes the value predicted by the numerical model, and S is a prescribed
coe�cient. For the cases considered herein, S=3 was found to give satisfactory results.
The numerical wave tank was of length 40 m and contained water of still water depth

1 m. The damping layer was 10 m long. Results were obtained for progressive waves of
period T =1:003s (or angular frequency !=6:264 rad=s), corresponding to a non-dimensional
period T̂ =T

√
g=d=� (or non-dimensional frequency !̂=2). Using the linear dispersion

equation, one can show that the corresponding (linear) wavelength is 1:5708 m, the wave
number k=4 rad=m and the celerity c=1:5661 m=s. Here, kd=4 and the case corresponds
to deep water waves. Mesh convergence was achieved using a 640 horizontal by 16 vertical
element �-transformed mesh. Stable and accurate results were obtained using a time step of
�t=T=20=0:05015 s, requiring a CPU time of 16 s per time step. Free surface smooth-
ing was only applied for the steepest wave cases. An initial ramp function was applied to
the wave-maker velocity in order to prevent spurious oscillations from developing, namely
uR = u tanh(t=6:3855). The damping layer was applied to the free surface from xs = 30 m to
xe = 40m. Figure 11 shows the evolution of small amplitude waves generated when the pad-
dle velocity has amplitude, Uo=H!=2=0:03132 m=s, corresponding to a linear theory wave
height of 0:01 m. Spatial pro�les are plotted along the tank at intervals equal to twice the
wave period for t=0 to 60T . At any given location between the wave-maker and damping
layer, the wave amplitude grows until it reaches a steady value equal to 0:005m, in agreement
with linear theory. Figure 12 plots the time history of the free surface at the centre of the
�ume, where the initial amplitude growth is smooth due to the ramp function.
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Figure 12. Time history at x=20 m. H =0:01 m, !=6:264 rad=s.

The �-transformed �nite element model was then used to simulate large amplitude waves
of appreciable non-linearity. The results were compared with Stokes’ �fth-order wave theory
as derived by Fenton [26], in which for deep water the free surface elevation is given by

�(x; t) = a1 cos(k(x − ct)) + a2 cos(2k(x − ct)) + a3 cos(3k(x − ct))
+ a4 cos(4k(x − ct)) + a5 cos(5k(x − ct)) (38)

where

a1 =
1
k

(
�− 3

8
�3 − 211

192
�5
)

a2 =
1
k

(
1
2
�2 +

1
3
�4
)

a3 =
1
k

(
3
8
�3 +

99
128

�5
)

a4 =
�4

3k

and a5 =
125�5

384k

for a wave steepness �= kH=2, and a fundamental wave number, k, found from the solution
of the equation

1 +
�2

2
+
�4

8
=

!√
gk

(39)

Twelve simulations were performed, with the input linear wave height ranging from 0.025 to
0:3m (corresponding to wave-maker velocity amplitudes ranging from 0.3915 to 0:9396m=s).
For each simulation, a portion of the steady state surface pro�le occupying 5 wavelengths has
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Figure 13. Plot of Fourier components a2 against a1. Circles: �-transform;
solid line: Stokes’ �fth-order theory.

Figure 14. Wavenumber, k against Fourier component a1. Circles: �-transform;
solid line: Stokes’ �fth-order theory.

been analysed using the FFT toolbox in MATLAB, to obtain the Fourier components a1 and
a2, corresponding to the wavelength and half the wavelength. These components are plotted
against each other in Figure 13, together with those given by Stokes’ �fth-order theory. It can
be seen that there is a close match between the numerical and analytical predictions up to a
�rst-component free surface elevation value of 0:06m. Figure 14 presents the wave number as
a function of the �rst Fourier component of free surface elevation. The wave number decreases
as the �rst-order component (i.e. wave amplitude) increases, as would be expected due to the
corresponding increase in wavelength. Again, there is excellent agreement between the wave
tank and analytical results for �rst-component free surface elevation up to the near-breaking
value of 0:09 m.
Figures 15 and 16 depict enlarged spatial pro�les of the free surface for progressive waves

of input linear wave height 0.225 and 0:3 m, respectively. In both cases, the numerical pre-
dictions di�er from the analytical solution of Stokes’ �fth order wave theory close to the
driving boundary at x=0 due to local transient free surface e�ects that appear to decay
within a wavelength. Once established, the numerically predicted waves in Figure 15 have
wave height 0:21 m, wavelength 1:79 m, and steepness �=0:37, and the pro�le is almost
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Figure 15. Input linear wave height, H =0:225 m. Free surface elevation spatial pro�le. Solid line:
�-transform solution; dashed line: Stokes’ �fth-order theory.

Figure 16. Input linear wave height, H =0:3 m. Free surface elevation spatial pro�le. Solid line:
�-transform solution; dashed line: Stokes’ �fth-order theory.

identical to that obtained from Stokes’ �fth theory. Non-linear e�ects are evident, with the
narrower taller crests and longer shallower troughs than would be expected from linear theory.
In Figure 16, the established simulated waves have height 0:27 m and wavelength 1:957 m.
The steepness is 0.43, and is equivalent to an almost-breaking wave. The agreement with
Stokes’ �fth theory is not so close as for the lower steepness case, and asymmetry is evident
at the wave crest evaluated by the numerical method. The foregoing results verify that the
�-transformed �nite element model is appropriate for simulating steep progressive waves.
The numerical wave tank was also used to simulate higher order shallow water waves.

Driving wave boundary conditions in the numerical model consisted of time-dependent water
particle velocities at the paddle corresponding to a wave height of 1:2192 m, wave period
of 15:0 s, and mean water depth of 7:62 m in a tank of length 1528 m. The time step was
0:1875 s, and the mesh contained 2560× 16 elements. The paddle motions were ramped up to
limit cycle conditions according to a hyperbolic tangent formula. Figures 17 and 18 indicate
that the predicted regular shallow water wave pro�les in space and time are in very close
agreement with analytical solutions from second-order cnoidal wave theory [27].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:641–663



658 M. S. TURNBULL, A. G. L. BORTHWICK AND R. EATOCK TAYLOR

Figure 17. Cnoidal wave. Wave height = 1:2192m. Period =15 s. Free surface elevation spatial pro�le.
Solid line: �-transform solution; dashed line: cnoidal second-order theory.

Figure 18. Cnoidal wave. Wave height = 1:2192 m. Period =15 s. Free surface elevation time history.
Solid line: �-transform solution; dashed line: cnoidal second-order theory.

4.4. Focused wave

In recent years, the concept of a focused wave group has been used to represent the pro-
�le of the extreme wave, whereby all wave components in a deepwater sea spectrum focus
simultaneously at a point in space. Tromans et al. [28], Jonathan et al. [29] and Taylor
and Haagsma [30] developed NewWave theory based on the focused wave idea, which has
been incorporated into a design calculation methodology for o�shore structures. In particular,
Tromans et al. found that the pro�le of a linear focused wave group is directly proportional
to the auto-correlation function of the spectrum. Baldock et al. [31] conducted meticulous
experimental investigations into the free surface motions and underlying kinematics of fo-
cused wave groups in deep water. Baldock et al. examined the e�ect of non-linearity on
focused wave group in a unidirectional wave �ume, and compared their experimental data
with linear and second-order theory. In this paper, the �-transformed �nite-element model
is used to simulate Cases B and D that were measured by Baldock et al. in the
�ume.
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The focused wave produced by Baldock et al. [31] has free surface elevation at the paddle
given by

�(xp; t)=
N∑
n=1
an cos(knxp +!nt) (40)

where an, kn, and !n are, respectively, the amplitude, wave number and wave frequency of the
nth wave component, N is the total number of wave components, xp is the distance from the
paddle to the linear focus position, and t is time. The corresponding paddle velocity pro�le
in the numerical wave tank is given by

u(xp; z; t)=
N∑
n=1
an!n

cosh(kn(d+ z))
sinh(knd)

cos(knxp +!n t) (41)

where d is the still water depth and z is the vertical distance above still water level. The
wave amplitude at the focus point is A=

∑N
n=1 an according to linear theory.

The experimental tank used by Baldock et al. was 20m long, 0:3m wide and had a depth
of 0:7 m. The numerical tank used here has a depth of 0:7 m, and is 28 m long, with a 7 m
damping zone at the far end. The computational mesh is 1280 elements long and 16 elements
deep. The time step is 0:021 s. Smoothing is not applied. The CPU time was 31 s per time
step on the Sun Workstation.
We consider results for two cases considered by Baldock et al., for spectra where each

component is of equal amplitude and equally spaced in the period domain. The �rst, Case B,
relates to a relatively broad-band spectrum where the periods range from 0.6 to 1:4 s. The
second, Case D, corresponds to a narrow-band spectrum where the periods range from 0.8
to 1:2 s.
Figures 19 and 20 depict the time-dependent free surface motions at the focal point for

Cases B and D, respectively. The �nite element model predictions (solid lines) and experimen-
tal measurements (dotted lines) match closely over the range of focus wave group amplitudes
considered. The linear solution is also plotted (dashed line), and, although excellent agree-
ment is obtained for the lower amplitude focused wave group, the e�ect of non-linearity at
higher amplitude leads to under-prediction of the maximum crest elevation and over-estimation
of the trough. This is in keeping with Baldock et al. who found that second-order theory
gave better predictions than linear theory for focused wave groups. It should be noted that
Johannessen and Swan [32] have simulated the same cases and obtained very similar re-
sults using an extension of Fenton and Rienecker’s [33] non-linear wave propagation
model.
The maximum crest elevation is plotted against input amplitude (i.e. the linear wave focused

wave amplitude) for Cases B and D in Figure 21. Excellent agreement is achieved between the
numerical predictions and Baldock et al.’s measurements. The non-linear growth in maximum
crest elevation with input amplitude is greater for the narrow-band spectrum, Case D, than
for broad-band Case B (again in keeping with Baldock et al.).

5. CONCLUSIONS

Details have been presented of a numerical wave tank based on a �-transformed �nite
element solution of Laplace’s equation for irrotational �ow, with fully non-linear free
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Figure 19. (a) Case B. A=22mm. Time history of free surface elevation at the focal point. Solid line:
�-transform; dashed line: linear solution; points: Baldock et al. [31]. (b) Case B. A=38 mm. Time
history of free surface elevation at the focal point. Solid line: �-transform; dashed line: linear solution;
points: Baldock et al. [31]. (c) Case B. A=55mm. Time history of free surface elevation at the focal

point. Solid line: �-transform; dashed line: linear solution; points: Baldock et al. [31].

surface dynamic and kinematic boundary conditions. The use of the �-transformation has
two main advantages. First, there is no need for remeshing in the computational domain, the
free surface motions being accounted for by means of extra complexity of the mathematical
formulation. Second, as a consequence, the vertical component of surface velocity can be
calculated using a high-order technique. This removes the need for free surface smoothing,
except for very steep waves. The method is applicable to inviscid free surface motions of
incompressible liquids, provided the motions are not so violent that incipient overturning con-
ditions are reached where the free surface becomes vertical and the mapping ceases to be
unique.
The numerical model has been used to simulate non-linear free surface sloshing in �xed

and horizontally excited rectangular tanks, and the results found to match closely those
from alternative numerical schemes. Excellent agreement is achieved with linear and second-
order potential theory for small amplitude motions. At larger amplitudes, the e�ect of non-
linearities becomes increasingly evident and the numerical predictions di�er from the low order
theory.
For progressive regular waves in a �ume, close agreement is achieved with Stokes’ �fth-

order theory for waves almost up to breaking, and with second-order cnoidal wave theory
in shallow water. Simulations of focused wave groups are also in excellent agreement with
experimental data provided by Baldock et al. [31].
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Figure 20. (a) Case D. A=22mm. Time history of free surface elevation at the focal point. Solid line:
�-transform; dashed line: linear solution; points: Baldock et al. [31]. (b) Case D. A=38 mm. Time
history of free surface elevation at the focal point. Solid line: �-transform; dashed line: linear solution;
points: Baldock et al. [31]. (c) Case D. A=55mm. Time history of free surface elevation at the focal

point. Solid line: �-transform; dashed line: linear solution. points: Baldock et al. [31].

Figure 21. Crest elevations. White triangle : sigma case B; white circle : sigma case D; black triangle :
Baldock et al. [31] case B; black circle : Baldock et al. [31] case D; solid line : linear solution.
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